Audio Output Transformer

LL7401
LL7401 is an audio output transformer for balanced drive.
In LL7401 a five section winding structure is used. This results in a very low leakage inductance without high capacitive coupling and low isolation voltage, which are drawbacks of the bifilar winding technique.

Turns ratio:

$1+1: 1+1$
Dims (Length x Width x Height above PCB (mm)):
$47 \times 34 \times 17$
Pin layout (viewed from component side) and winding schematics:

06		120
05		110
04	LLT7401	100
03	(Top view)	
02		80
01		70

Can+Core - 10

Spacing between pins:
Spacing between rows of pins:
Weight:

Rec. PCB hole diameter:

Static resistance of each primary:
Static resistance of each secondary:
Leakage inductance of secondaries (sec. in series):
No-load impedance:
Optimum source impedance:
Balance of output (according to IRT, source $<10 \Omega, \operatorname{Load} 600 \Omega$):
$5.08 \mathrm{~mm}\left(0.2^{\prime \prime}\right)$
35.56 mm (1.4")

92 g
1.5 mm
9Ω
9Ω
$50 \mu \mathrm{H}$
$>700 \Omega$ @ $50 \mathrm{~Hz},+20 \mathrm{dBU}$
Minus 9Ω (See application below)
$>60 \mathrm{~dB}$

Note! Performance figures below are obtained using mixed feedback drive circuits. (See application example).Otherwise use lowest possible source impedance.

Distortion (connection as application example below, load 600Ω) 0.05% @ +22 dBU, 50 Hz
Frequency response (@ 10 dBU , connections as below, load 600Ω): $20 \mathrm{~Hz}--80 \mathrm{kHz}+/-0.3 \mathrm{~dB}$
Voltage loss across transformer (at midband with 600Ω load): 0 dB
Isolation between primary and secondary windings / between windings and core:
$4 \mathrm{kV} / 2 \mathrm{kV}$
Application example with mixed feedback: (NOTE! This application is covered by a German patent
DE 2901567 with application day 13.1.79, valid as far as we know in Germany only.)

